US009098262B2

a2 United States Patent 10) Patent No.: US 9,098,262 B2
Frailong et al. 45) Date of Patent: *Aug. 4, 2015
(54) EFFICIENT ARITHIMETIC LOGIC UNITS (52) US.CL
CPC .. GO6F 9/28 (2013.01); GOGF 9/30 (2013.01);
(71) Applicant: Juniper Networks, Inc., Sunnyvale, CA GOGF 9/3001 (2013.01); GO6F 15/00 (2013.01)
(Us) (58) Field of Classification Search
. None
(72) Inventors: Jean-Marc Frailong, L.os Altos Hills, See application file for complete search history.

(73)

")

@
(22)

(65)

(63)

(1)

CA (US); Pradeep S. Sindhu, Los Altos

Hills, CA (US); Jeffrey G. Libby, (56) References Cited

Cupertino, CA (US); Jian Hui Huang,

Fremont, CA (US); Rajesh Nair, U.S. PATENT DOCUMENTS

Fremont, CA (US); John Keen, 4,120,583 A 10/1978 Hyatt

Mountain View, CA (US) 5481,736 A 1/1996 Schwartz
5,751,614 A 5/1998 Cohen

Assignee: Juniper Networks, Inc., Sunnyvale, CA 6,223,277 Bl 4/2001 Karguth
(US) 8,880,856 B1 11/2014 Frailong et al.

20020124155 Al 9/2002 Sami et al.
. . o . 2006/0288195 Al 12/2006 Madet al.
Notice: Sutblet“, to altly (gszlalmeéz thte fiermgftgl; 2009/0240920 Al 9/2009 Muffet al.
patent 15 extended or adjusted unaer
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS

This patent is subject to a terminal dis- Koh et al. “Functional Unit Chaining: A Runtime Adaptive Architec-

claimer. ture for Reducing Bypass Delays”, 2006.
“ARMI1136JF-S and ARM1136]-S Technical Reference Manual”,
Appl No.: 14/529’331 Revision: rlpl, 2005.

Primary Examiner — Corey S Faherty
(74) Attorney, Agent, or Firm — Harrity & Harrity, LLP

Prior Publication Data (57) ABSTRACT

US 2015/0058599 Al Feb. 26,2015 A processor may include a conditional arithmetic logic unit
and a main arithmetic logic unit. The conditional arithmetic
logic unit may perform a first arithmetic logic operation to

Related U.S. Application Data generate a first result, and output the result. The main arith-
metic logic unit may select input buses among a plurality of
data buses that carry the first result from the conditional
arithmetic logic unit, perform a second arithmetic logic
operation on data provided by the selected input buses to

Filed: Oct. 31, 2014

Continuation of application No. 12/486,114, filed on
Jun. 17, 2009, now Pat. No. 8,880,856.

Int. CI. . :
GO6F 9/28 (2006.01) gtenerate a secondt result, and write the second result in a
GO6F 15/00 (2006.01) storage component.

GO6F 9/30 (2006.01) 20 Claims, 12 Drawing Sheets

1200

1202 1204
SELECT A FIRST OPERAND FOR A IN A BYPASS MODE, OUTPUT THE
MALU SELECTED FIRST OPERAND AND A MASK
1206 l I 1?1 2
IN A NON-BYPASS MODE, FOR A NON- N THE NON-BYPASS MODE, FOR A UNARY
UNARY OPERATION, EXTRACT A FIELD OPERATION, SELECT A CONSTANT OR
FROM THE FIRST OPERAND THE SELECTED FIRST OPERAND
12808 l l 1? 4
SELECT A SECOND OPERAND
1210 EXTRACT ABYTE OR A NIBBLE FROM THE
CONSTANT OR THE SELECTED FIRST
PERFORM AN OPERATION ON THE
EXTRACTED FIELD AND THE SECOND
OPERAND

7] |

FORMAT THE RESULT OF PERFORMING THE OPERATION OR THE EXTRACTED BYTE/
NIBBLE IF THE OUTPUT IS TO BE WRITTEN TO PARTICULAR COMPONENTS OF A PACKET
PROCESSING ENGINE

1?8 l
WRITE THE OUTPUT OF THE MALU TO ONE OR MORE COMPONENTS WITHIN OR QUTSIDE
QF THE PACKET PROCESSING ENGINE

U.S. Patent Aug. 4, 2015 Sheet 1 of 12 US 9,098,262 B2

BUSES BUSES
— CONDITIONAL ALUs - MAIN ALUs (MALUS) .
A —
pcode - pcode

U.S. Patent Aug. 4, 2015 Sheet 2 of 12 US 9,098,262 B2

200

U.S. Patent

INCOMING
PACKETS

INCOMING
PACKETS

Aug. 4, 2015
202-x
__| coNTROLLER
302
LINE
—»{ INTERFACE
304-1
SWITCH
FABRIC
306
LINE
—»{ INTERFACE
304-2 |-

Sheet 3 of 12

US 9,098,262 B2
LINE
OUTGOING
INTERFACE ~ [—
304.3 PACKETS
LINE
OUTGOING
INTERFACE
3004 PACKETS

U.S. Patent

Aug. 4, 2015 Sheet 4 of 12

304-x SWITCH FABRIC
306

US 9,098,262 B2

N
&

FABRIC
INTERFACE
402

1

PACKET
TABLES QZD PROCESSING
404 ENGINE

406

i

<

PACKET EGRESS/
INGRESS PORT

US 9,098,262 B2

Sheet 5 of 12

Aug. 4, 2015

U.S. Patent

406

DATA MEMORY
502-1

o :

g H

_ T m

& o W~
O w o 0D H
= zZ oo a H
= o) X9 2 "
o o =) 0 < H
w . Q" DIS. '
o g - MM LRM > =3 i
OB < © < H o > » ob :
% P 2 RS :
Q@ © W = e '

o @) o z0 < :
O & —» ouw = H
O 4 s} o = '
= o 3 < H
= m

X i

) H

@ [} :

T v

\d i mm
9 % m

04 o i) m
i > <53 & =
B & =D @) < :
= o] n QW b= Q :
Q = w o = H
_m_RL w x _._MLZ . L] :
— = < 7R o 2 i
z J — '
53 X S o 52 "
3 3 % H
= < O < 10 H
% _nm — pd H
T Z x @ 2 :
= Q Wi E :
™) !

(2] Q [y 0 '
Z z0 > P :
O O W O H

o i o :

© » _ ® i
g :
E i
=3 W H

Fig. 5

U.S. Patent Aug. 4, 2015 Sheet 6 of 12 US 9,098,262 B2

504-1 \

LMA 602-0 | LMB 602-1 I

SAO 604-0 SA1 604-1
REA 6060 || REB G061 |[ROAB08-0 || ROB 608-1

KA 610-0 KB 610-1
CA0 612-0 || CFEO 614-0 || CB0616-0 || COPO 618-0
CA1612-1 || CFE1 614-1 || CB1616-1 || COP1618-1
CA2 612-2 || CFE2 614-2 || CB26162 || COP2618-2
CA3 6123 | CFE3 614-3 [cesetss | copssiss

MAOM' MFEO 624-0 || MB0626-0 | MoPo6280 |
@"W || MB1626-1 | MOP16281 |
[wrieat [Mwieset

| OTHER 6

4

2

Fig. 6

U.S. Patent Aug. 4, 2015 Sheet 7 of 12 US 9,098,262 B2

700 \

702
— REA
— ROA
— REB
— ROB
—_—
CA — LMA
— LMB
— XTXN B
— EXT
~ 64 710X
— CFEX
——CFEy
HT SHIFT TOP MASK
\G 70? \t gs | "o le—EwW — CFEz
S — KMAO-KMA3
32 32 —KMAH
— KMAL
Y Y — KMBH
— KMBL
708 —KA
KB
— KAH
CFEne—— _ —1 32 —KAL
v Y - KBH
\/ L KBL
ALU 1
2 COP 0
1 32
Cn CALUn

U.S. Patent Aug. 4, 2015 Sheet 8 of 12 US 9,098,262 B2
800\v
802
COP || CALUnN || Cn
(A&B)==

A>B
| Al=B

011 || Ar~B |
100 | A+B || A==B

101 A-B A<B
110 B-A A>=B
111 || MIN(A, B) || A<=B

U.S. Patent

Aug. 4, 2015 Sheet 9 of 12 US 9,098,262 B2
900
902 [REA /
— ROA
\’ — REB
—ROB |e— mA
L | MA
— L MB
— XTXN
L EXT
64
Y 910
< RIGHT SHIFT \ : TOP MASK BOTTOM
64
| | MB
64
\]
\
912 904 —CALUO
N6/ le—wB N —datu
—CALU2
32 [CALU3
! KMAH
v \/ L KMAL
— KMBH
EXTF;’?gTOR «— MB MOP ALU L KMBL
— 914 —KA
KB
-8 —KAH
L
1 T 32 L KAL
y — KBH
L KBL
MOP —1 220 [
)
4732
e
2
s LEFT SHIFT IRx
922 928
—~1"64
* \
— MASK — IS
MOP —— 926 GENERATOR
924 — |\
64
DATA

U.S. Patent Aug. 4, 2015 Sheet 10 of 12 US 9,098,262 B2

1000\

MOP || RESULT

0000 | A&B

1004 1000 C0?2AB D

1001 || C1?AB

1010 || C2?AB

1011 || C3?AB
. .

1111 || UNARY OPERATION ON A

Fig. 10

U.S. Patent Aug. 4, 2015 Sheet 11 of 12 US 9,098,262 B2

1100

1102— SELECT A FIRST OPERAND AT A CALU
\ /
1104— EXTRAGT A FIELD FROM THE SELEGTED FIRST OPERAND
\ /
1106— SELECT A SECOND OPERAND FOR THE CALU
\ /
1108— PERFORM AN OPERATION AT AN ALU OF THE CALU
\ J
OUTPUT A CONDITION CODE AND A RESULT OF THE OPERATION AT
1110 THE CALU

Fig. 11

U.S. Patent Aug. 4, 2015 Sheet 12 of 12 US 9,098,262 B2

1200
1202 1204
SELECT A FIRST OPERAND FOR A _ IN A BYPASS MODE, OUTPUT THE
MALU ~| SELECTED FIRST OPERAND AND A MASK
1206 1212
Y ‘ 8
IN A NON-BYPASS MODE, FOR A NON- IN THE NON-BYPASS MODE, FOR A UNARY
UNARY OPERATION, EXTRACT A FIELD OPERATION, SELECT A CONSTANT OR
FROM THE FIRST OPERAND THE SELECTED FIRST OPERAND
1208 1214

SELECT A SECOND OPERAND

1210 EXTRACT ABYTE OR A NIBBLE FROM THE
CONSTANT OR THE SELECTED FIRST
8 OPERAND

PERFORM AN OPERATION ON THE
EXTRACTED FIELD AND THE SECOND
OPERAND

1216

Y

FORMAT THE RESULT OF PERFORMING THE OPERATION OR THE EXTRACTED BYTE/
NIBBLE IF THE OUTPUT IS TO BE WRITTEN TO PARTICULAR COMPONENTS OF A PACKET
PROCESSING ENGINE

Y

1218

A

WRITE THE OUTPUT OF THE MALU TO ONE OR MORE COMPONENTS WITHIN OR OUTSIDE
OF THE PACKET PROCESSING ENGINE

Fig. 12

US 9,098,262 B2

1
EFFICIENT ARITHIMETIC LOGIC UNITS

RELATED APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/486,114 filed Jun. 17, 2009 (now U.S. Pat.
No. 8,880,856), which is incorporated herein by reference.

BACKGROUND

In a reduced instruction set computer (RISC) architecture,
microprocessors execute pipelined instructions at a high
clock speed. In more modern designs, however, microproces-
sors rely on parallelism for speed. For example, in a multi-
core design, many cores in a single processor package may
concurrently execute multiple threads. In another example, in
a very long instruction word (VLIW) architecture, a micro-
processor may execute multiple components of a microin-
struction in parallel.

SUMMARY

According to one aspect, a processor may include a con-
ditional arithmetic logic unit and a main arithmetic logic unit.
The conditional arithmetic logic unit may perform a first
arithmetic logic operation to generate a first result, and output
the first result. The main arithmetic logic unit may select input
buses among a plurality of data buses that carry the first result
from the conditional arithmetic logic unit, perform a second
arithmetic logic operation on data provided by the selected
input buses to generate a second result, and write the second
result in a storage component.

According to another aspect, a method may include per-
forming a first arithmetic logic operation at a first arithmetic
logic unit to generate a first result, outputting the first result to
a first operand selector of a second arithmetic logic unit,
selecting, at the first operand selector, a first operand for the
second arithmetic logic unit, selecting a second operand for
the second arithmetic logic unit, extracting a field from the
selected second operand, performing a second arithmetic
logic operation on the selected first operand and the selected
second operand to generate a second result, and writing the
second result to a component.

According to yet another aspect, a device may include
means for performing a first arithmetic logic operation to
generate a first result, means for outputting the first result,
means for selecting input data from among data that include
the first result, means for performing a second arithmetic
logic operation on the selected input data to produce a second
result, and means for writing the second result in a memory.

According to yet another aspect, a processor may include a
conditional arithmetic logic unit and a main arithmetic logic
unit. The conditional arithmetic logic may evaluate a condi-
tion of a conditional instruction to produce a condition code,
and output the condition code. The main arithmetic logic unit
may select a first input operand and a second input operand,
perform an arithmetic logic operation on the first and second
input operands based on the condition code, and write a result
of performing the arithmetic logic operation to a component.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more embodiments described herein and, together with the
description, explain the embodiments. In the drawings:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 is a block diagram illustrating exemplary concepts
described herein;

FIG. 2 is a diagram of an exemplary network in which
concepts described herein may be implemented;

FIG. 3 isablock diagram of an exemplary device of F1G. 2;

FIG. 4 is a functional block diagram of an exemplary line
interface of FIG. 3;

FIG. 5 is a functional block diagram of an exemplary
packet processing engine of FIG. 4 and a data memory;

FIG. 6 is a block diagram of exemplary fields that may be
included in an instruction register of FIG. 5;

FIG. 7 is a block diagram of an exemplary conditional
arithmetic logic unit (CALU) of FIG. 5;

FIG. 8 shows a table of exemplary ALU operations that
may be specified by a field in the instruction register of FIG.
5;

FIG. 9 is a block diagram of an exemplary main arithmetic
logic unit (MALU) of FIG. 5;

FIG.10is atable of exemplary MALU operations that may
be specified by a field in the instruction register of FIG. 5;

FIG. 11 is a flow diagram of an exemplary process for
performing a CALU operation; and

FIG. 12 is a flow diagram of an exemplary process for
performing a MALU operation.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The following detailed description refers to the accompa-
nying drawings. The same reference numbers in different
drawings may identify the same or similar elements. The term
“packet,” as used herein, may include a packet, a datagram,
and/or acell; a fragment of a packet, a datagram, and/or a cell;
and/or another type of data. As used herein, the term “micro-
instruction” may include a microcode instruction. The term
“memory device,” as used herein, may refer to dynamic
memory, such as registers, on-chip memory (e.g., on-board
cache), random access memory (RAM), and static RAM
(SRAM), for storing data and machine-readable instructions.
Depending on context, “memory device” may also refer to
static memory, such as read only memory (ROM), or storage
devices, such as a floppy disk, Compact Disk (CD) ROM, CD
read/write (R/W) disc, and/or flash memory, as well as other
types of storage devices.

As described below, a device may include efficient arith-
metic logic units (ALUs). FIG. 1 is a block diagram that
illustrates concepts described herein. As shown, the device
may include a processor 100. Processor 100 may include
hardware, software, or a combination of hardware and soft-
ware that may perform processing tasks.

In FIG. 1, processor 100 may include conditional arith-
metic logic units (CALUs) 102 (herein individually referred
to as CALU 102) and main arithmetic logic units (MALUs)
(herein individually referred to as MALU 104). Although not
illustrated in FIG. 1, the device may include other compo-
nents (e.g., a memory external to processor 100, a network
interface, etc.).

CALU 102 may include components for selecting fields
from input buses, performing arithmetic/logic operations on
the selected fields to evaluate conditions of a conditional
instruction (e.g., “(x>y)” in “if (x>y) y=10"), or providing
data results of evaluating the operations to another compo-
nent (e.g., MALU 104) in processor 100. MALU 104 may
include components for selecting fields from input buses,
performing arithmetic/logic operations on the selected
inputs, including data from CALU 102, and writing the result

US 9,098,262 B2

3

of the operations to other components (e.g., general purpose
registers (GPRs), a memory, etc.) within or external to pro-
cessor 100.

By performing field selections at CALU 102 and MALU
104, by evaluating a conditional instruction in CALU 102,
and by MALU 104 using the conditional result from CALU
102 to either complete or suppress the write of its result data
to other components, processor 100 may save clock cycles in
performing microinstructions.

FIG. 2 illustrates a network 200 in which concepts
described herein may be implemented. Network 200 may
include the Internet, an intranet, a local area network (LAN),
a wide area network (WAN), a metropolitan area network
(MAN), a cellular network, a public switched telephone net-
work (PSTN), an ad hoc network, any other network, or a
combination of one or more networks.

As shown in FIG. 2, network 200 may include devices
202-1 through 202-N (individually referred to herein as a
“device 202-x"). Device 202-x may include, for example,
device 100, a router, a switch, a gateway, a server, a personal
computer, a mobile computer (e.g., a laptop computer, a cell
phone, etc.), etc. Although device 202-x may be implemented
as any computer-like device, in the following description,
device 202-x will be described in terms of a router/switch.

FIG. 3 illustrates exemplary components of device 202-x.
As shown, device 202-x may include a controller 302, line
interfaces 304-1 through 304-4 (collectively referred to
herein as “line interfaces 304" and individually as “line inter-
face 304-x"), and a switch fabric 306.

Controller 302 may include one or more components for
managing routes and/or types of information that may require
centralized processing. For example, controller 302 may
manage routes (e.g., may accept or disseminate routes to
other devices 202) in accordance with routing/signaling pro-
tocols, may receive and process statistics related to packets,
and/or may process packet samples from other components of
device 202-x (e.g., from line interfaces 304). In another
example, controller 302 may provide functionalities related
to distributing information (e.g., rules for classifying packets)
to other components of device 202-x.

Line interface 304-x may include one or more components
for receiving packets from devices in network 200 and for
transmitting packets to other devices in network 200. In addi-
tion, line interface 304-x may forward packets, classify pack-
ets, redirect packets to other components in device 202-x,
manage a table of packet statistics, and/or sample packets.

Switch fabric 306 may include one or more switches for
conveying packets from line interfaces 304 and/or other mod-
ules of device 202-x (not shown) to line interfaces 304 and/or
to the other modules.

Device 202-x may include fewer, additional, and/or difter-
ent components than shown in FIG. 3. For example, device
202-x may include additional or fewer line interfaces or addi-
tional controllers. Device 202-x may further include one or
more modules (not shown) that may connect to switch fabric
306 and may perform various network services. For example,
device 202-x may include a firewall service module, an intru-
sion detection service module, an encryption/decryption ser-
vice module, and/or other types of service modules.

FIG. 4 is a block diagram of exemplary functional compo-
nents of line interface 304-x. As shown, line interface 304-x
may include a fabric interface 402, tables 404, and a packet
processing engine 406. Although FIG. 4 shows exemplary
functional components ofline interface 304-x, in other imple-
mentations, line interface 304-x may include fewer, different,
or additional functional components than those depicted in
FIG. 4. For example, in one implementation, line interface

10

15

20

25

30

35

40

45

50

55

60

65

4

304-x may include a communication interface located
between packet processing engine 406 and packet egress/
ingress port.

Fabric interface 402 may include hardware, software, or a
combination of hardware and software that provide an inter-
face to switch fabric 306. For example, fabric interface 402
may include one or more bufters (not shown) for temporarily
storing augmented packets (e.g., packets pre-pended with
additional header information) received from packet process-
ing engine 406. The buffers may prevent the packets from
being dropped if a bottleneck (e.g., a processing delay) devel-
ops on a line interface-to-line interface path during packet
transport.

Tables 404 may include a classification table, a forwarding
table, and/or any other table that may be used for processing
packets. A classification table may include rules for catego-
rizing a packet based on a packet header. Examples of clas-
sification rules may include rules for performing an access
control list lookup for security purposes, rules for performing
policy-based routing (e.g., if a packet header is a telephony
packet, the classification rules may route the packet from one
location to another location via an asynchronous transfer
mode (ATM) circuit), and/or rules for rendering differenti-
ated quality of service (QoS). A forwarding table may include
information for identifying an egress line interface to forward
an incoming packet to a network node based on the packet’s
network destination address.

Packet processing engine 406 may include hardware, soft-
ware, or a combination of hardware and software that for-
wards and/or classifies a packet received at line interface
304-x. Packet processing engine 406 may perform a lookup of
tables 404 (e.g., of a forwarding table or of a classification
table), may obtain a packet descriptor that includes a forward-
ing address (e.g., a destination switch fabric port, a destina-
tion network port, etc.) and information for processing the
packet, may sample the packet, and/or may manage the
sampled packet and/or packet statistics.

In processing the packet, packet processing engine 406
may perform series of actions that may be specified by micro-
instructions. The microinstructions may be produced by com-
piling source code for an application or for part of an operat-
ing system, such as, for example, Juniper Operating System
(JUNOS), Cisco Internet Operating System (I0S), etc. In
addition, packet processing engine 406 may execute the
microinstructions in one or more threads or processes.

FIG. 5 is a block diagram of exemplary functional compo-
nents of packet processing engine 406 and a data memory
502-1. As shown, packet processing engine 406 may include
a local memory 502-2, a microcode memory 502-3, an
instruction register 504-1, a program counter 504-2, pointer
registers 504-3, swap registers 504-4, general purpose regis-
ters (GPRs) 504-5, a switch box 506, CALUs 508-1, and
MALUSs 508-2. Although FIG. 5 shows exemplary functional
components of packet processing engine 406, in other imple-
mentations, packet processing engine 406 may include fewer,
different, or additional functional components than depicted
in FIG. 5. For example, in one implementation, a cache and a
dynamic memory may replace memories 502-1 through 502-
3. Furthermore, packet processing engine 406 may include
different data paths than the data paths depicted in FIG. 5.

Data memory 502-1, which, in one implementation, is not
be included in packet processing engine 406, may include a
memory device that may store a forwarding database (e.g., a
forwarding information base (FIB)), routing policies, mul-
tiple instruction sets, etc. In some implementations, data
memory 502-1 may be large relative to other memories (e.g.,
local memory 502-2), and, consequently, may be imple-

US 9,098,262 B2

5

mented off-chip (e.g., on a different semiconductor chip than
the one on which packet processing engine 406 is imple-
mented). In such implementations, accessing data memory
502-1 by packet processing engine 406 can be slower than
accessing other memories, such as local memory 502-2 or
microcode memory 502-3.

Local memory 502-2 may include a memory device that
may store packet-related information (e.g., packet headers)
and/or other types of data. Microcode memory 502-3 may
include a memory device that may store microinstructions. In
some implementations, microcode memory 502-3 may be
configured to store very long instruction word (VLIW)
instructions. Constant memory 502-4 may include a memory
device that may store constant values. In one implementation,
constant memory 502-4 may output one or more constants,
based on fields of a microinstruction.

Instruction register 504-1 may include a memory device
that may store a currently executing microinstruction, which
may have been retrieved from microcode memory 502-3.
Program counter 504-2 may include a memory device that
may store an address of the currently executing microinstruc-
tion, and may be used to push/receive the address onto/from
a call stack. In another implementation, program counter
504-2 may be used to calculate an address of the next micro-
instruction to be loaded into instruction register 504-1.
Pointer registers 504-3 may include a memory device that
may store information that may be used to access local
memory 502-2. For example, contents of pointer registers
504-3 may designate a specific address in local memory 502-
2.

Swap registers 504-4 may include a memory device that
may include information for accessing an instruction within
an instruction set in data memory 502-1. By use of swap
registers 504-4, a set of instructions may be “swapped in” for
execution. In another implementation, different types of stor-
age (e.g., a dynamic memory, onboard cache, etc.) may be
used in place of swap registers 504-4.

General purpose registers (GPRs) 504-5 may include a
memory device that may store data and/or addresses. Specific
fields within a microinstruction may select specific GPRs
504-5 that feed buses into switch box 506. Switch box 506
may include a multiplexer or similar component with a
mechanism for selecting data from specific buses (e.g., buses
from GPRS 504-5, data memory 502-1 (not shown), local
memory 502-2. etc.). The selected data may be directed to
other components, such as, for example, CALUs 508-1 or
MALUSs 508-2.

CALUs 508-1 may include arithmetic logic units (e.g.,
components that may perform arithmetic and logic operations
within a processor). CALU 508-1 may select fields from input
buses, compute conditions that drive branch decisions in a
microinstruction, and/or provide input to another component
of packet processing engine 406 (e.g., MALUs 508-2). The
computation may include arithmetic and/or logic operations
(e.g., adding two numbers) performed on fields and sub-fields
of a microinstruction, on contents of GPRs 504-5, on contents
of a portion of local memory 502-2 and/or data memory
502-1, and/or on constants (e.g., numbers, strings, etc.) from
constant memory 502-4. Although, in a different implemen-
tation, CALUs 508-1 may include any number of individual
CALUEs, in the following description, it will be assumed that
CALUs 508-1 include four individual CALUs.

MALUs 508-2 may include components for selecting
fields from input buses and arithmetic logic units that perform
arithmetic/logic operations on fields and subfields of a micro-
instruction, on contents of GPRs 504-5, on contents of a
portion of local memory 502-2 and/or data memory 502-1, on

10

15

20

25

30

35

40

45

50

55

60

65

6

outputs from CALUs 508-1, and/or on constants from con-
stant memory 502-4. The output of MALUs 508-2 may be
written to GPRs 504-5, data memory 502-1, local memory
502-2, and/or swap registers 504-4. Although, in a different
implementation, MALUs 508-2 may include any number of
individual MALUEs, in the following, it will be assumed that
MALUSs 508-2 include two individual MALUs.

In FIG. 5, during an operation of packet processing engine
406, a microinstruction may be read into instruction register
504-1. Various fields of the microinstruction in instruction
register 504-1 may select specific GPRs 504-5, a portion of
local memory 502-2, and/or a portion of data memory 502-1.
In addition, the microinstruction may drive computations at
CALUs 508-1 and MALUs 508-2.

FIG. 6 is a block diagram of exemplary fields that may be
included in instruction register 504-1. As shown, instruction
register 504-1 may include LMA field 602-0, LMB field
602-1, SAO field 604-0, SA1 field 604-1, REA field 606-0,
REB field 606-1, ROA field 608-0, ROB field 608-1, KA field
610-0, KB field 610-1, CAO field 612-0 through CA3 field
612-3 (herein collectively referred to as CAx fields 612 and
individually as CAx field 612-x), CFEO field 614-0 through
CFE3 field 614-3 (herein collectively referred to as CFEx
fields 614 and individually as CFEx field 614-x), CBO field
616-0 through CB3 field 616-3 (herein collectively referred to
as CBx fields 616 and individually as CBx field 616-x), COPO
field 618-0 through COP3 field 618-3 (herein collectively
referred to as COPx fields 618 and individually as COPx field
618-x), CW field 620, MAO and MA1 fields 622-0 and 622-1
(herein collectively referred to as MAx fields 622 and indi-
vidually as MAx field 622-x), MFEO and MFE1 fields 624-0
and 624-1 (herein collectively referred to as MFEx fields 624
and individually as MFEXx field 624-x), MBO and MBI fields
626-0 and 626-1 (herein collectively referred to as MBx fields
626 and individually as MBx field 626-x), MOPO and MOP1
fields 628-0 and 628-1 (herein collectively referred to as
MOPx fields 628 and individually as MOPx field 628-x),
MFIO0 and MFI1 fields 630-0 and 630-1 (herein collectively
referred to as MFIx fields 630 and individually as MFIx field
630-x), MWO and MW1 fields 632-0 and 632-1 (herein col-
lectively referred to as MWXx fields 632 and individually as
MWx field 632-x), and other fields 634. Depending on the
implementation, instruction register 504-1 may include
fewer, additional, or different fields than those illustrated in
FIG. 6.

Each of LMA field 602-0 and LMB field 602-1 may store
an address for accessing local memory 502-2. In some
instances, the addresses in LMA field 602-0 and LMB field
602-1 may be stored in pointer registers 504-3. The stored
addresses may then be later used to access information stored
in local memory 502-2. In other instances, the addresses in
LMA field 602-0 and LMB field 602-1 may be used to
directly read from memory blocks, which are specified by the
values in LMA and LMB fields 602-0 and 602-1, in local
memory 502-2.

SAO field 604-0 and SA1 field 604-1 may store codes that
specify a variety of operations that may be used less fre-
quently by packet processing engine 406 than other opera-
tions (e.g., a special write instruction). Specific values in SAO
field 604-0 and/or SA1 field 604-1 may modity the behavior
of MALUs 508-2.

REA field 606-0 and REB field 606-1 may designate two
even numbered registers in GPRs 504-5. The designated reg-
isters may output data via buses from GPRs 504-5. Similarly,
ROA field 608-0 and ROB field 608-1 may designate two odd
numbered registers in GPRs 504-5.

US 9,098,262 B2

7

KA field 610-0 and KB field 610-1 may address constants
that are stored at two addresses in constant memory 502-4.
Constant memory 502-4 may output the addressed constants
to other components in FIG. 5.

CAx field 612-x (one of CAO field 612-0 through CA3 field
612-3) may store information that may be used by aCALU in
CALUs 508-1 to select an input operand, among outputs from
particular components in FIG. 5. CFEXx field 614-x may store
information that may be used by the CALU to select and use
subfields within the selected input operand. CBx field 616-x
may store information that may be used by the CALU to
select another input operand, among outputs from other com-
ponents in FIG. 5, for the CALU. COPx field 618-x may store
information that may be used by the CALU to select one or
more of several possible operations (e.g., addition of two
operands, bitwise AND of two operands, etc.) that may be
performed by the CALU. CW field 620 may control writing
the output of one or more CALUs to registers.

MAXx field 622-x may store information that may be used
by a MALU to select an input operand, among outputs from
particular components in FIG. 5, for the MALU. MFEXx field
624-x may store information that may be used by the MALU
to select and use subfields within the selected input operand.
MBx field 626-x may store information that may be used by
the MALU to select another input operand, among outputs
from other components in FIG. 5. MOPx field 628-x may
store information that may be used by the MALU to select one
or more of several possible operations (e.g., addition of two
operands, bitwise AND of two operands, etc.). MFIx 630-x
may store information for selecting and formatting subfields
of the output of the MALU. MWx 632-x may store informa-
tion that may be used by the MALU to write the output of the
MALU to data memory 502-1, local memory 502-2, and/or
GPRs 504-5.

Other fields 634 may include fields such as a parity bit field,
a field used for performance monitoring, etc.

Exemplary Conditional Arithmetic Logic Unit
(CALU)

FIG. 7 is a block diagram of an exemplary CALU 700 of
CALUs508-1. As shown, CALU 700 may include an operand
selector 702, a right shift register 704, a top mask unit 706, a
combiner 708, an operand selector 710, and an ALU 712.
Depending on the implementation, CALU 700 may include
fewer, additional, or different components than those illus-
trated in FIG. 7.

Operand selector 702 may include a hardware component
for selecting an input operand based on a signal, which is
illustrated as CA in FIG. 7. Signal CA may be obtained from
microcode field CAx 612-x via data buses, and may be used to
select one of the following sets of input data buses: REA,
ROA, REB, ROB, LMA, LMB, XTXN, and EXT.

REA and REB may include data from even numbered
GPRs 504-5 that are designated by values set in REA field
606-0 and REB field 606-1, respectively, in instruction reg-
ister 504-1. Similarly, ROA and ROB may include data from
odd numbered GPRs 504-5 that are designated by values set
in ROA field 608-0 and ROB field 608-1, respectively. LMA
and LMB may include data from local memory 502-2. The
memory locations, within local memory 502-2, from which
LMA and LMB are obtained, may be specified by pointer
registers 504-3 or LMA field 602-0 and LMB field 602-1.
XTXN and EXT may include data from other components of
packet processing engine 406.

Returning to FIG. 7, right shift register 704, top mask unit
706, and combiner 708 may include components for extract-

10

15

20

25

30

35

40

45

50

55

60

65

8

ing an arbitrary bit field from input buses selected at operand
selector 702. As shown, right shift register 704 may shift input
from operand selector 702 to the right, by a number of bits
specified by an ES signal, and top mask unit 706 may generate
a mask with a number of bits (e.g., 1’s) specified by an EW
signal. The signals ES and EW may be specified by CFEx
field 614-x in instruction register 504-1. The outputs of right
shift register 704 and top mask unit 706 may be bitwise
AND’ed at combiner 708.

Operand selector 710 may include a hardware component
for selecting an input operand based on a signal CB. Operand
selector 710 may obtain CB from microcode field CBx 616-x
via data buses, and use CB to select one of the following input
data buses: CFEx, CFEy, CFEz, KMAO, KMA1, KMA2,
KMA3, KMAH, KMAL, KMBH, KMBL, KA, KB, KAH,
KAL, KBH, KBL, 1’s, and 0’s,

Each of CFEx through CFEy may include buses that are
tapped from the output of combiner 708 in another CALU of
CALUs 508-1. Each of KMAO through KMA3 may include
buses from a subfield within KMA, which is a constant stored
in constant memory 502-4, at an address specified by KA field
610-0 of instruction register 504-1. KMAH and KMAL may
include upper and lower halves of buses from KMA. Simi-
larly, KMBH and KMBL may include upper and lower halves
of'buses from KMB. KA and KB may include buses from KA
field 610-0 and KB field 610-1 in instruction register 504-1.
KAH and KAL may correspond to the upper and lower
halves, respectively, of KA, and KBH and KBL may corre-
spond to the upper and lower halves of KB. 1’s may include
buses that carry a 32-bit value of 0x00000001, and 0’s may
include buses that carry a 32-bit value of all zeros.

ALU 712 may include a hardware component for perform-
ing arithmetic and/or logic operations on the outputs of com-
biner 708 and operand selector 710. As shown in FIG. 7, the
outputs of ALLU 712 may include a condition code Cn and data
CALUn.

A specific operation that ALU 712 performs may depend
on the value of COP, which may be obtained from COPx field
618-x. FIG. 8 shows atable 800 of exemplary ALU operations
that may be specified by the COP. In table 800, letters “A” and
“B” may represent the outputs of combiner 708 and operand
selector 710, respectively. Depending on the design of CALU
(e.g., size of the COPx field), table 800 may have more or
fewer than 8 operations. Although table 800 shows 8 opera-
tions, one operation specified at row 802 is discussed below
for purposes of illustration.

As shown at row 802, when the COP is “001” (see COP
field of row 802), ALU 712 may compute a bitwise AND of A
and ~B, where ~B is a bitwise complement of B. ALU 712
may output the result of A& ~B as signal CALUn (see A&~B
in CALUn field of row 802). In addition, ALU 712 may
determine whether the result of A&~B is equal to “0.” If the
result is equal to “0,” ALU 712 may output a Cn of “1;”
otherwise, ALU 712 may output a Cn of “0.” This is indicated
in Cn field in row 802 as “(A&~B)=—0."

For each of the other operations in table 800, AL.U 712 may
determine the value of CALUn and Cn in a manner similar to
that described for A&~B at row 802. The values of CALUn
and Cn may be used to perform sequencing (e.g., determine
the next microinstruction) in packet processing engine 406,
used as an input to a MALU operation, and/or to perform
conditional writes by the MALU.

Exemplary Main Arithmetic Logic Unit (MALU)

FIG. 9 is a block diagram of an exemplary MALU 900 of
MALUSs 508-2. As shown, MALU 900 may include an oper-

US 9,098,262 B2

9

and selector 902, an operand selector 904, a right shift register
906, a top mask unit 908, a bottom mask unit 910, a combiner
912, an ALU 914, a data selector 916, a byte/nibble extractor
918, a data selector 920, a left shift register 922, a mask
generator 924, a data selector 926, and an intermediate reg-
ister 928. Depending on the implementation, MAL U 900 may
include fewer, additional, or different components than those
illustrated in FIG. 9.

Operand selector 902 may include a hardware component
for selecting an input operand based on a signal, which is
illustrated as MA in F1G. 9. Signal MA may be obtained from
microcode field MAx 622-x via data buses, and may be used
to select one of the following sets of input data buses: REA,
ROA, REB, ROB, LMA, LMB, XTXN, and EXT. Data buses
REA, ROA, REB, ROB, LMA, LMB, XTXN, and EXT are
described above with reference to FIG. 7.

Operand selector 904 may include a hardware component
for selecting an input operand based on a signal MB. Signal
MB may be obtained from microcode field MBx 626-x via
data buses, and may be used to select one of the following sets
of input data buses: CALUO, CALU1, CALU2, CALU3,
KMAH, KMAL, KMBH, KMBL, KA, KB, KAH, KAL,
KBH, KBL, 1’s, and 0’s.

CALUO through CALU3 may include output data buses
from four different CALUs of CALUs 508-1. KMAH,
KMAL, KMBH, KMBL, KA, KB, KAH, KAL, KBH, KBL,
1’s, and 0’s are described above with reference to FIG. 7.

Right shift register 906, top mask unit 908, bottom mask
unit 910, and combiner 912 may include components for
extracting an arbitrary bit field from input buses selected at
operand selector 902. Right shift register 906 may shift input
from operand selector 902 to the right, by number of bits
specified by a signal ES. Top mask unit 908 may generate a
mask with a number of bits (e.g., 1°s) specified by a signal
EW. Bottom mask unit 910 may generate a mask with a
number of bits specified by a signal E2. The signals ES, EW,
and E2 may be specified by MFEXx field 624-x and SAx field
604-x in instruction register 504-1. The outputs of right shift
register 906, top mask unit 908, and bottom mask unit 910
may be bitwise AND’ed at combiner 912. Top mask unit 908
may set a number, corresponding to signal EW, of its least
significant bits to 1 (i.e., EW specifies the number of least
significant bits set to 1). All other higher-order bits of the
mask generated by top mask unit 908 may be set to 0. Bottom
mask unit 910 may clear a number, corresponding to signal
E2, of its least significant bits to zero (i.e., E2 specifies the
number of least significant bits cleared to zero). All other
higher-order bits of the mask generated by bottom mask unit
910 may be set to 1. After a bit-wise AND of the masks
generated by top mask unit 908 and bottom mask unit 910 is
performed, the result has its E2 least significant bits cleared to
0, the next EW-E2 bits set to 1, and all higher-order bits
cleared to 0, thus, effectively performing a left-shift opera-
tion.

ALU 914 may include a hardware component for perform-
ing arithmetic and/or logic operations on the outputs of com-
biner 912 and operand selector 904. The specific operation
that ALU 914 performs may depend on the value of MOP,
which is obtained from MOPx field 628-x. FIG. 10 shows a
table 1000 of exemplary ALU operations that may be speci-
fied by the MOP. In table 1000, letters “A” and “B” may
represent the outputs of combiner 912 and operand selector
904, respectively. Although table 1000 shows a number of
different operations, operations specified at rows 1002 and
1004 are discussed below for purposes of illustration,

As shown at row 1002, when the MOP is “0010” (see the
MOP field of row 1002), ALU 914 may compute a bitwise

10

15

20

25

30

35

40

45

50

55

60

65

10
EXCLUSIVE-OR of operands A and B. In contrast to ALU
712, ALU 914 may not output a condition code. Row 1004
shows that, when the MOP is “1000,” ALU 914 may output
either A or B, depending on the value of condition code CO
(see FIG. 7) from CALU 700.

Returning to FI1G. 9, data selector 916, byte/nibble extrac-
tor 918, and data selector 920 may support a set of unary
operations (see the bottom row of table 1000 in FIG. 10).
When MALU 900 performs the unary operation, data selector
916 may select either KMB or the output of operand selector
902. Byte/nibble extractor 918 may extract eight or four bits
from the output of data selector 916, and pass the result to data
selector 920. Data selector 920 may output the result of byte/
nibble extractor 918 when MALU 900 performs the unary
operation. When MALU 900 performs a non-unary opera-
tion, data selector 920 may select the output of ALU 914.

Left shift register 922 and mask generator 924 may form a
component for formatting a portion of the output of data
selector 920 when the output is to be written to particular
components of packet processing engine 406, such as GPRs
504-5 or local memory 502-2. In such instances, left shift
register 922 may align the output of data selector 920 to a
proper byte boundary (e.g., 64 byte boundary) in accordance
with signal IS. Mask generator 924 may output a mask in
accordance with signals IS and IW. The signals IS and ITW
may be derived from the values in MFIx field 630-x in an
implementation dependent manner. In one implementation,
both the outputs of left shift register 922 and mask generator
924 may be generated in accordance with IS and IW and used
in writing to local memory 502-2 and/or GPRs 504-5.

Data selector 926 may output either the result of left shift
register 922 or the output of operand selector 902. When data
selector 926 selects the output of operand selector 902, the
selected operand may effectively bypass ALU 914.

IRx 928 may temporarily store the output of data selector
920.

In the above, the output of MALU 900 may be written to
different components of or components outside of packet
processing engine 406 (e.g., local memory 502-2 or data
memory 502-1). Data that is actually written may be depen-
dent on bit values of MWx field 632-x of instruction register
504-1. For example, a value of “110010” at MWO field 632-0
may indicate that MALU 900 may write its output to local
memory 502-2, at a memory location specified by the value in
LMA field 602-0 in instruction register 504-1. In some
instances, the MALU 900’s write operation may depend on
the values of CALUs’ condition codes (e.g., Cn in FIG. 7).

Exemplary Processes for Performing CALU and
MALU Operations

FIG. 11 shows a flow diagram of an exemplary process
1100 for performing a CALU operation. Assume that packet
processing engine 406 is executing microinstructions, and
that components in 406 are receiving signals from one
another via data buses. In addition, assume that instruction
register 504-1 has loaded in a microinstruction.

As shown in FIG. 11, process 1100 may begin with a
selection of a first operand (block 1102). For example, oper-
and selector 702 in CALUO may select REA, ROA, REB,
ROB, LMA, LMB, XTXN, or EXT.

A field may be extracted from the selected first operand
(block 1104). For example, right shift register 704, top mask
unit 706, and a combiner 708 in CAL.UO may extract a field in
accordance with CFEO field 614-0, as described above in

US 9,098,262 B2

11

connection with CALU 700. The output of combiner 708
(e.g., CFEO) may be tapped and input to other CALUs in
CALU 508-1.

A second operand may be selected (block 1106). For
example, operand selector 710 in CALUO may select a sec-
ond operand among CFE1, CFE2, CFE3, KMAO, KMA1,
KMA2, KMA3, KMAH, KMAL, KMBH, KMBL, KA, KB,
KAH, KAL, KBH, KBL, 1’s, and 0’s, in accordance with
CBO field 616-0.

An operation may be performed at an ALU of the CALU
(block 1108). For example, ALLU 712 in CALUO may perform
an arithmetic and/or logic operation in accordance with
COPO field 618-0.

A condition code and a data result of the operation may be
output at the CALU (block 1110). For example, CAL.UO may
output a condition code and the data result of the operation.
As discussed above in connection with table 800, the condi-
tion code may indicate a result of performing a specific test.
The condition code and the data result of the CALU operation
may be provided to other components of packet processing
engine 406, such as MALUs 508-2.

FIG. 12 shows a flow diagram of an exemplary process
1200 for performing a MALU operation. Assume that packet
processing engine 406 is executing microinstructions, com-
ponents in packet processing engine 406 are receiving signals
from one another via data buses, and instruction register
504-1 has loaded in a microinstruction.

A first operand may be selected (block 1202). For example,
operand selector 902 of MALU1 may select REA, ROA,
REB, ROB, LMA, LMB, XTXN, or EXT. In addition, at
block 1202, depending on an operating mode of MALU 900,
process 1200 may branch to block 1204, block 1206, or block
1212. The operating mode may be determined based on the
values of certain fields within instruction register 504-1.

In a bypass mode, the selected first operand and a mask
may be output (block 1204). The term “bypass mode,” as used
herein, may refer to a mode in which arithmetic/logic opera-
tion of MALU 900 is bypassed. The mask may be output from
mask generator 924.

In a non-bypass mode, for a non-unary operation, a field
may be extracted from the selected first operand (block 1206).
The term “unary operation,” as used herein, may refer to an
operation that may be performed on a single operand. For
example, converting a positive number into a negative num-
ber may be considered a unary operation. Whether an opera-
tion is a unary operation or not may depend on the values of
the MOP (see table 1000). Returning to block 1206, in
extracting the field from the first operand, combiner 912 may
apply masks that are provided by top mask unit 908 and
bottom mask unit 910 to the output of right shift register 906.

For the non-unary operation, a second operand may be
selected (block 1208). For example, operand selector 904
may select the second operand.

The non-unary operation may be performed on the
extracted field and the second operand (block 1210). For
example, ALU 914 may perform an arithmetic/logic opera-
tion on the output of combiner 912 and operand selector 904.
The specific arithmetic/logic operation that ALU 914 per-
forms may depend on the value of MOP field 628-x of instruc-
tion register 504-1.

In the non-bypass mode, for a unary operation, a constant
or the selected first operand may be selected (block 1212). For
example, data selector 916 may select KMB or the output of
operand selector 902.

For the unary operation, a byte/nibble may be extracted
from the constant or the selected first operand (block 1214).
For instance, byte/nibble extractor 918 may select a byte or a

40

45

60

12

nibble from the output of data selector 916, which may output
either the first operand or the constant.

The output of the non-unary operation (see block 1210) or
the extracted byte/nibble (see block 1214) may be formatted
if the output is to be written to particular components of
packet processing engine 406 (block 1216). For example, left
shift register 922 and mask generator 924 may determine
which bits of the output of data selector 920 are stored if the
output is to be written to GPRs 504-5 or to local memory
502-2.

The output of the MALU may be written to one or more
components within or outside of the processor (block 1218).
For example, the output of data selector 926 may be masked
with the output of mask generator 924 and written to local
memory 502-2. In some instances, the writing may depend on
the values of MWx field 632. In other instances, the writing
may depend on the values of Cn (see FIG. 7).

In the above, by performing operand selections at CALU
700 and MALU 900, by evaluating conditions of a condi-
tional instruction in CALU 700 and inputting the result to
MALU 900, and by writing a result from MALU 900 to other
components of a packet processing engine, the packet pro-
cessing engine may save clock cycles by performing multiple
operations in a single microinstruction that would require
many instructions in a typical RISC processor.

CONCLUSION

The foregoing description of implementations provides
illustration, but is not intended to be exhaustive or to limit the
implementations to the precise form disclosed. Modifications
and variations are possible in light of the above teachings or
may be acquired from practice of the teachings.

For example, while CALU 700 and MALU 900 have been
described as components in packet processing engine 406,
CALU 700 and MALU 900 may be implemented as part of
other types of processors.

In another example, while series of blocks has been
described with regard to exemplary processes illustrated in
FIGS. 11 and 12, the order of the blocks may be modified in
other implementations. In addition, non-dependent blocks
may represent acts that can be performed in parallel to other
blocks.

It will be apparent that aspects described herein may be
implemented in many different forms of software, firmware,
and hardware in the implementations illustrated in the figures.
The actual software code or specialized control hardware
used to implement aspects does not limit the invention. Thus,
the operation and behavior of the aspects were described
without reference to the specific software code—it being
understood that software and control hardware can be
designed to implement the aspects based on the description
herein.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the invention. In
fact, many of these features may be combined in ways not
specifically recited in the claims and/or disclosed in the speci-
fication.

No element, act, or instruction used in the present applica-
tion should be construed as critical or essential to the imple-
mentations described herein unless explicitly described as
such. Also, as used herein, the article “a” is intended to
include one or more items. Where one item is intended, the
term “one” or similar language is used. Further, the phrase
“based on” is intended to mean “based, at least in part, on”
unless explicitly stated otherwise.

US 9,098,262 B2

13
What is claimed is:
1. A device comprising:
a conditional arithmetic logic unit, implemented at least
partially in hardware, to:
perform, based on a microinstruction associated with
processing received data, a first operation to generate
a first result, and
output the first result via a particular bus of a plurality of
buses; and
a main arithmetic logic unit, implemented at least partially
in hardware, to:
select, based on the microinstruction, the particular bus
from the plurality of buses to determine the first result
as corresponding to a first input,
select, based on the microinstruction, a set of input buses
from the plurality of buses to determine a second
input,
perform a second operation on the first input and the
second input to generate a second result, and
output, based on the microinstruction, the second result,
the received data being processed based on the second
result.
2. The device of claim 1, where, when outputting the first
result, the conditional arithmetic logic unit is to:
output, via the particular bus, the first result and a condition
code,
where the condition code indicates that the first result
satisfies a condition associated with the first opera-
tion.
3. The device of claim 2, where, when outputting the sec-
ond result, the main arithmetic logic unit is to:
output the second result based on the condition code.
4. The device of claim 1, where, when performing the first
operation, the conditional arithmetic logic unit is to:
perform one of:
an arithmetic operation, or
a logic operation.
5. The device of claim 1, where the main arithmetic logic
unit is further to:
determine that the second result is to be output to a particu-
lar component of the device; and
format the second result based on the second result being
output to the particular component.
6. The device of claim 1, where the main arithmetic logic
unit is further to:
extract, based on the microinstruction, a field from the
second input; and
where, when performing the second operation, the main
arithmetic logic unit is to:
perform the second operation on the first input and the
field extracted from the second input.
7. The device of claim 1, where
the device comprises a processor, and
when outputting the second result, the main arithmetic
logic unit is to:
output the second result to a device that is external to the
processor.
8. A method comprising:
performing, by a first arithmetic logic unit and based on a
microinstruction associated with processing data
received at a network device, a first operation to generate
a first result,
the first arithmetic logic unit being implemented at least
partially in hardware;
outputting, by the first arithmetic logic unit, the first result
via a particular bus of a plurality of buses;

10

—_
w

20

25

30

35

40

45

50

55

60

14

selecting, by a second arithmetic logic unit and based on
the microinstruction, the particular bus from the plural-
ity of buses to determine the first result as corresponding
to an input,
the second arithmetic logic unit being implemented at
least partially in hardware;
performing, by the second arithmetic logic unit, a second
operation on the input to generate a second result; and
outputting, by the second arithmetic logic unit and based
on the microinstruction, the second result,
the data being processed by the network device based on
the second result.
9. The method of claim 8, where the input comprises a first
input, the method further comprising:
selecting, by the second arithmetic logic unit and based on
the microinstruction, a set of input buses from the plu-
rality of buses to determine a second input; and
where performing the second operation includes:
performing, by the second arithmetic logic unit, the sec-
ond operation on the first input and the second input to
generate the second result.
10. The method of claim 9, where performing the second
operation further includes:
performing, on the first input and the second input, one of:
an arithmetic operation, or
a logic operation.
11. The method of claim 8, where performing the second
operation includes:
performing a unary operation.
12. The method of claim 8, where outputting the first result
includes:
outputting, by the first logic unit, the first result and a
condition code,
where the condition code indicates that the first result
satisfies a condition associated with the first opera-
tion.
13. The method of claim 12, where outputting the second
result includes:
outputting the second result based on the condition code.
14. The method of claim 8, where performing the second
operation includes:
determining that the second arithmetic logic unit is asso-
ciated with a bypass mode; and
where outputting the second result includes:
outputting the input and a mask based on the second
arithmetic logic unit being associated with the bypass
mode.
15. A non-transitory computer-readable medium storing
instructions, the instructions comprising:
one or more instructions that, when executed by a network
device, cause the network device to:
perform, based on a microinstruction associated with
processing data received by the network device, a first
arithmetic logic operation to generate a first result;
output the first result via a particular bus of a plurality of
buses;
select, based on the microinstruction, the particular bus
from the plurality of buses to determine the first result
as corresponding to an input;
perform a second arithmetic logic operation on the input
to generate a second result; and
output, based on the microinstruction, the second result,
the data being processed by the network device based
on the second result.
16. The non-transitory computer-readable medium of
claim 15, where the input comprises a first input, the instruc-
tions further comprising:

US 9,098,262 B2

15

one or more instructions that, when executed by the net-
work device, cause the network device to:
select, based on the microinstruction, a set of input buses
from the plurality of buses to determine a second
input; and
where the one or more instructions to perform the second
operation include:
one or more instructions that, when executed by the
network device, cause the network device to:
perform the second operation on the first input and the
second input to generate the second result.
17. The non-transitory computer-readable medium of
claim 15, where
the data comprises a packet received at a line interface of
the network device, and

the packet is processed based on the second result.

10

15

16

18. The non-transitory computer-readable medium of
claim 15, where the one or more instructions to output the first
result include:

one or more instructions to output the first result and a

condition code,

where the condition code indicates that the first result
satisfies a condition associated with the first opera-
tion.

19. The non-transitory computer-readable medium of
claim 18,

where the one or more instructions to output the second

result include:
one or more instructions to output the second result
based on the condition code.

20. The non-transitory computer-readable medium of
claim 15, where the microinstruction includes a very long
instruction word (VLIW) instruction.

#* #* #* #* #*

